
django-configglue Documentation
Release

Ricardo Kirkner

August 05, 2011

CONTENTS

1 django-configglue 101 3
1.1 Create the schema . 3
1.2 Create the config files . 3
1.3 Glue into django . 4
1.4 Test . 4
1.5 Profit! . 4

2 Using django-configglue: a more in-depth walkthrough 5
2.1 The basics . 5
2.2 Layered configuration . 7
2.3 Interpolation . 7
2.4 Command line integration . 8
2.5 Validation . 8

i

ii

django-configglue Documentation, Release

Contents:

CONTENTS 1

django-configglue Documentation, Release

2 CONTENTS

CHAPTER

ONE

DJANGO-CONFIGGLUE 101

This is a minimalistic step-by-step guide on how to start using django-configglue to manage the settings for your
Django project.

1.1 Create the schema

First we need to create the schema that will define the settings we want to support in our configuration files.

Start by creating a module called schema.py, such as

import django
from configglue import schema
from django_configglue.schema import schemas

DjangoSchema = schemas.get(django.get_version())

class MySchema(DjangoSchema):
foo = schema.IntOption()
bar = schema.BoolOption()

The MySchema schema will support all Django supported settings (as defined in the DjangoSchema schema), and it
introduces two custom options (foo and bar in the default section – __main__).

1.2 Create the config files

Now we need to create the configuration file where we specify the values we want to have for our options. Create a
file called main.cfg

[__main__]
foo = 1
bar = true

[django]
database_engine = sqlite3
database_name = :memory:
installed_apps =

django.contrib.auth
django.contrib.contenttypes
django.contrib.sessions

3

django-configglue Documentation, Release

django.contrib.sites
django_configglue

1.3 Glue into django

Finally, we need to implement the glue between configglue and Django, so that it can read out the settings defined in
our configuration files.

Replace the standard settings.py module in your project with

from django_configglue.utils import configglue
from .schema import MySchema

make django aware of configglue-based configuration
configglue(MySchema, [’main.cfg’], __name__)

1.4 Test

And let’s make sure everything works as expected

$ python manage.py settings --validate
Settings appear to be fine.

1.5 Profit!

That’s it! Your project now uses django-configglue to manage it’s configuration. Congratulations!

If you want to know more about django-configglue, read Using django-configglue: a more in-depth walkthrough.

4 Chapter 1. django-configglue 101

CHAPTER

TWO

USING DJANGO-CONFIGGLUE: A
MORE IN-DEPTH WALKTHROUGH

Warning: This walkthrough assumes previous knowledge of configglue, and how to read and write configglue
based configuration files.

2.1 The basics

Let’s start by creating a Django project.

django-admin startproject quickstart

In order for Django to be aware of the configuration glue provided by django-configglue, we need to replace the
standard settings.py module with a version that knows how to read the settings from the ini-style configuration files.

cd quickstart
mv settings.py settings.py.orig

Replace settings.py with

import django
from django_configglue.schema import schemas
from django_configglue.utils import configglue

DjangoSchema = schemas.get(django.get_version())

make django aware of configglue-based configuration
configglue(DjangoSchema, [’main.cfg’, ’local.cfg’], __name__)

This code snippet defines a schema (a static description of which configuration options and sections are available,
including a type definition for each option, in order to allow for configuration validation) for Django’s settings, which
it will use to create a parser that knows how to parse these kind of configuration files. It will then read two files, called
main.cfg and local.cfg, in that order, and will populate the module’s local dictionary with the parsed values.

As we decided to read main.cfg and local.cfg files if available, let’s create the main.cfg file first. This file is where you
define the default settings and their values. You can later override those using local.cfg or any other file, as we’ll see
later.

Put the following content into a file called main.cfg

5

django-configglue Documentation, Release

[django]
installed_apps = django_configglue

This is the smallest Django configuration file required for django-configglue to work, equivalent to a standard Django
settings.py module with the following content

INSTALLED_APPS = (’django_configglue’,)

Let’s make sure this configuration is valid, meaning it’s well formed, and should work alright.

$ python manage.py settings --validate
Settings appear to be fine.

Great, everything seems to be in place.

Now, we can query configglue to see what configuration options have been defined.

$ python manage.py settings --show
ROOT_URLCONF = ’urls’
SETTINGS_MODULE = ’quickstart.settings’
SITE_ID = 1

While this output might look a bit odd (where are the configuration settings we defined? why are these other settings
listed, which we never specified?), everything can be explained.

The –show parameter lists any setting not defined in the global_settings.py module (that is part of Django). To include
those settings, you have to pass in the –global option as well

$ python manage.py settings --show --global
...
INSTALLED_APPS = [’django_configglue’]
...

This lists all settings, including the ones that we defined previously in our configuration file.

Since the list can be quite extensive, there are better ways for getting the values we care for. It’s possible to request
just the settings we’re interested in.

$ python manage.py settings email_port
EMAIL_PORT = 25
$ python manage.py settings EMAIL_PORT
EMAIL_PORT = 25

Tip: The name of the setting is pseudo-case-insensitive, as django-configglue will search for the name as provided,
and fall back to using it’s upper-case version before failing.

As can be seen, the output of the settings command lists the settings in Django’s standard format.

If we pass in a non-existing setting, we’ll get an error message

$ python manage.py settings email
setting EMAIL not found

An interesting option is –locate, which will make more sense once we cover layered configuration. This option
displays the location where the requested setting was last defined.

$ python manage.py settings --locate database_name
setting DATABASE_NAME last defined in ’/path/to/main.cfg’

6 Chapter 2. Using django-configglue: a more in-depth walkthrough

django-configglue Documentation, Release

2.2 Layered configuration

Configglue supports reading multiple configuration files so that specific settings can be grouped into different files,
and overridden as needed.

In the settings.py module previously defined, we specified that django-configglue should read the configuration values
from the following files (and in order):

1. main.cfg

2. local.cfg

The idea is to have the default values defined in the main.cfg file, and override as appropriate using the local.cfg
file. The goal of splitting the configuration this way is to be able to hold part of the configuration in version control
(main.cfg), and other aspects not (local.cfg). The contents of the local.cfg file would follow the same syntax as for the
main.cfg file, but as they are read in later, would override any value already defined in main.cfg.

There is another way of telling configglue to read in other files, without having to specify them in the settings.py
module. This is achieved by means of the includes keyword.

For example, if you add this to main.cfg

[__main__]
includes = custom.cfg

Note: The __main__ section is a special section that is always present, independently of any section defined by the
schema.

and create a custom.cfg file with the following content:

[django]
installed_apps =

django.contrib.auth
django.contrib.contenttypes
django.contrib.sessions
django.contrib.sites
django_configglue

The INSTALLED_APPS setting will be read from the custom.cfg configuration file, as can be verified by running

$ python manage settings.py installed_apps
INSTALLED_APPS = [’django.contrib.auth’, ’django.contrib.contenttypes’, ’django.contrib.sessions’, ’django.contrib.sites’, ’django_configglue’]

and

$ python manage settings.py --locate installed_apps
setting INSTALLED_APPS last defined in ’/path/to/custom.cfg’

This last command shows that the INSTALLED_APPS setting was effectively read from the custom.cfg file.

2.3 Interpolation

Another interesting feature of configglue, which django-configglue based configuration files can therefore also use, is
variable interpolation. This means that a variable can be defined in terms of another variable.

If we add the following snippet to the ‘django’ section of the custom.cfg configuration file

2.2. Layered configuration 7

django-configglue Documentation, Release

template_debug = %(debug)s

We can then verify that the TEMPLATE_DEBUG setting value depends on the value of the DEBUG setting.

$ python manage.py settings debug
DEBUG = True
$ python manage.py settings template_debug
TEMPLATE_DEBUG = True

Even if we change the value of the DEBUG setting (go ahead and add the following to the custom.cfg file, under the
‘django’ section)

debug = false

and then issue the command

$ python manage.py settings template_debug debug
TEMPLATE_DEBUG = False
DEBUG = False

2.4 Command line integration

So far we’ve looked at statically-defined configuration values. One of the real benefits of configglue is being able to
override variables by means of command-line provided parameters.

Let’s look at one parameter called INTERNAL_IPS

$ python manage.py settings internal_ips
INTERNAL_IPS = []

and let’s override that setting from the command-line

$ python manage.py settings --django_internal_ips=127.0.0.1,192.168.0.1 internal_ips
INTERNAL_IPS = [’127.0.0.1’, ’192.168.0.1’]

As can be seen, the way to specify an option from the command line is to specify

--<section>_<option>=<value>

Take care that the specified value has to be valid according the the option’s type, as defined by it’s schema, as it will
be casted to match it.

In this example, the type for INTERNAL_IPS is a TupleOption, so the value will be interpreted as a tuple of strings,
separated by commas.

2.5 Validation

Finally, one of the key benefits of using django-configglue for managing your Django settings is the ability to validate
the configuration before restarting your server.

Validation will ensure all required parameters have been assigned values, and that there are no unknown sections
mentioned in the configuration files (useful to catch typos). Also, type validation will take place, ensuring the values
used for each option are valid according to that option’s type as specified by the schema.

So, generally, a valid configuration will produce the following result:

8 Chapter 2. Using django-configglue: a more in-depth walkthrough

django-configglue Documentation, Release

$ python manage.py settings --validate
Settings appear to be fine.

However, if you try to specify an invalid value for some option, the corresponding error will be raised

$ python manage.py settings --django_site_id=foo
Traceback (most recent call last):
...
ValueError: Invalid value ’foo’ for IntOption ’site_id’ in section ’django’. Original exception was: invalid literal for int() with base 10: ’foo’.

If, on the other hand, an invalid section name is used that will be reported too. Edit the custom.cfg file so that the
section name reads

[dajngo]

instead of

[django]

When validating the configuration

$ python manage.py settings --validate
Error: Settings did not validate againt schema.

Sections in configuration are missing from schema: dajngo

it will be noted that the dajngo section is not valid according to the schema used.

2.5. Validation 9

	django-configglue 101
	Create the schema
	Create the config files
	Glue into django
	Test
	Profit!

	Using django-configglue: a more in-depth walkthrough
	The basics
	Layered configuration
	Interpolation
	Command line integration
	Validation

